If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=-20x^2+400x
We move all terms to the left:
4-(-20x^2+400x)=0
We get rid of parentheses
20x^2-400x+4=0
a = 20; b = -400; c = +4;
Δ = b2-4ac
Δ = -4002-4·20·4
Δ = 159680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{159680}=\sqrt{64*2495}=\sqrt{64}*\sqrt{2495}=8\sqrt{2495}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-8\sqrt{2495}}{2*20}=\frac{400-8\sqrt{2495}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+8\sqrt{2495}}{2*20}=\frac{400+8\sqrt{2495}}{40} $
| 8b+12=12b | | 0=20x^2+400x | | -24x4x+7=-25 | | 3n+8=24-n | | h+25=-723 | | 8u+6=8U+6 | | a/9=4/3 | | 25x−36x+36=0 | | j-2.5=11.06 | | 5n^2−3n−15=10 | | 6.5r-13=1.5r+12 | | 0.05x=145.95 | | P=p÷6/7=2/3 | | X+(x+100)=10 | | 16x^2+10x-27=2x+8 | | -9=27+12b | | 6/8k+2=-28 | | X2+14x-169=0 | | 3-42h=15 | | 57=5b-3 | | 1/2t+4=3/2t+1 | | 12t+4=32t+1 | | X+4(4x+4)=8(27) | | -2=4+3x-2 | | 24x+5=180 | | 20=m−57 | | 8x+5=-3x+2* | | z+18=93 | | 2x+5=x+17=3x-16 | | 7^x=5^2x-1 | | 6h-9=3h+18 | | -6f+4=4-6f |